1,230 research outputs found

    Polarization singularities from unfolding an optical vortex through a birefringent crystal

    Get PDF
    Optical vortices (nodal lines and phase singularities) are the generic singularities of scalar optics but are unstable in vector optics. We investigate experimentally and theoretically the unfolding of a uniformly polarized optical vortex beam on propagation through a birefringent crystal and characterize the output field in terms of polarization singularities (C lines and points of circular polarization; L surfaces and lines of linear polarization). The field is described both in the 2-dimensional transverse plane, and in three dimensions, where the third is abstract, representing an optical path length propagated through the crystal. Many phenomena of singular optics, such as topological charge conservation and singularity reconnections, occur naturally in the description

    Polarization singularities from unfolding an optical vortex through a birefringent crystal

    Get PDF
    Optical vortices (nodal lines and phase singularities) are the generic singularities of scalar optics but are unstable in vector optics. We investigate experimentally and theoretically the unfolding of a uniformly polarized optical vortex beam on propagation through a birefringent crystal and characterize the output field in terms of polarization singularities (C lines and points of circular polarization; L surfaces and lines of linear polarization). The field is described both in the 2-dimensional transverse plane, and in three dimensions, where the third is abstract, representing an optical path length propagated through the crystal. Many phenomena of singular optics, such as topological charge conservation and singularity reconnections, occur naturally in the description

    A kinetic model for RNA-interference of focal adhesions

    Get PDF
    Background: Focal adhesions are integrin-based cell-matrix contacts that transduce and integrate mechanical and biochemical cues from the environment. They develop from smaller and more numerous focal complexes under the influence of mechanical force and are key elements for many physiological and disease-related processes, including wound healing and metastasis. More than 150 different proteins localize to focal adhesions and have been systematically classified in the adhesome project ( http://www.adhesome.org). First RNAi-screens have been performed for focal adhesions and the effect of knockdown of many of these components on the number, size, shape and location of focal adhesions has been reported. Results: We have developed a kinetic model for RNA interference of focal adhesions which represents some of its main elements: a spatially layered structure, signaling through the small GTPases Rac and Rho, and maturation from focal complexes to focal adhesions under force. The response to force is described by two complementary scenarios corresponding to slip and catch bond behavior, respectively. Using estimated and literature values for the model parameters, three time scales of the dynamics of RNAi-influenced focal adhesions are identified: a sub-minute time scale for the assembly of focal complexes, a sub-hour time scale for the maturation to focal adhesions, and a time scale of days that controls the siRNA-mediated knockdown. Our model shows bistability between states dominated by focal complexes and focal adhesions, respectively. Catch bonding strongly extends the range of stability of the state dominated by focal adhesions. A sensitivity analysis predicts that knockdown of focal adhesion components is more efficient for focal adhesions with slip bonds or if the system is in a state dominated by focal complexes. Knockdown of Rho leads to an increase of focal complexes. Conclusions: The suggested model provides a kinetic description of the effect of RNA-interference of focal adhesions. Its predictions are in good agreement with known experimental results and can now guide the design of RNAi-experiments. In the future, it can be extended to include more components of the adhesome. It also could be extended by spatial aspects, for example by the differential activation of the Rac- and Rho-pathways in different parts of the cell

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Improving the Efficiency of FP-LAPW Calculations

    Full text link
    The full-potential linearized augmented-plane wave (FP-LAPW) method is well known to enable most accurate calculations of the electronic structure and magnetic properties of crystals and surfaces. The implementation of atomic forces has greatly increased it's applicability, but it is still generally believed that FP-LAPW calculations require substantial higher computational effort compared to the pseudopotential plane wave (PPW) based methods. In the present paper we analyse the FP-LAPW method from a computational point of view. Starting from an existing implementation (WIEN95 code), we identified the time consuming parts and show how some of them can be formulated more efficiently. In this context also the hardware architecture plays a crucial role. The remaining computational effort is mainly determined by the setup and diagonalization of the Hamiltonian matrix. For the latter, two different iterative schemes are compared. The speed-up gained by these optimizations is compared to the runtime of the ``original'' version of the code, and the PPW approach. We expect that the strategies described here, can also be used to speed up other computer codes, where similar tasks must be performed.Comment: 20 pages, 3 figures. Appears in Comp. Phys. Com. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
    • …
    corecore